Quantification of *Campylobacter jejuni* in **Poultry Processing Rinses Utilizing Shortened Enrichment Times and RT-PCR**

Aaron R. Bodie¹ Dana K. Dittoe¹, Savannah F. Applegate², Tyler P. Stephens², and Steven C. Ricke¹

¹Meat Science and Animal Biologics Discovery Program, Dept. of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, 53706, USA ² Hygiena[™], 2 Boulden Circle, New Castle, DE 19720

Introduction:

Currently, prevalence-based data is used to determine process control during animal harvest; however, this does not provide information on the level and subsequent risk of *Campylobacter* contamination. Therefore, it is imperative to be able to detect and quantify *Campylobacter* contamination throughout the harvest process.

Purpose:

The objective was to develop and optimize a rapid quantification method for *Campylobacter jejuni* (CampyQuant[™]) in post-chill poultry rinsates using the linear fit equation generated from the BAX[®] System Cycle Threshold (CT) values to estimate initial concentrations.

941 Avenida Acaso, Camarillo, CA 93012 • Tel: +1 805 388 8007 Email: diagnostics.support@hygiena.com • hygiena.com

Methods:

Bulk post-chill poultry rinsates (N=13; 30 mL) were aliquoted to 24 oz. Whirl-Pak bags inoculated with 1 to 4 Log₁₀ CFU/mL of *C. jejuni* (n=3) samples/inoculation level) with one uninoculated sample. After inoculation, 30 mL of pre-warmed (42°C) 2X blood-free Bolton's Broth with 2X supplement was added to each sample and incubated at 42°C for 18h then tested in quintuple with the BAX[®] Q7 RT-PCR System. These results were then compared to estimate C. jejuni concentration in relation to the initial inoculation levels.

Results:

A linear fit equation was generated using the BAX[®] Q7 System to estimate *C. jejun*i pre-enrichment concentrations in poultry rinsates. The equation had statical parameters yielding an R² of 0.95 and Log₁₀ RMSE of 0.24. The Mann-U test revealed no difference between observed C. *jejuni* Log₁₀ concentrations and estimated *C. jejuni* Log₁₀ concentrations.

Significance:

BAX[®] System CampyQuant[™] provides an estimations of *Campylobacter* pre-enrichment Log₁₀ CFU/mL with an enumerable range from 1.00 to 4.00 Log₁₀ CFU/mL. The study suggests that the BAX[®] Q7 RT-PCR system can provide the food industry with a rapid, accurate, and efficient alternative method for *C. jejuni* enumeration to ensure that process controls are working adequately to provide safe products to consumers.

concentrations using CampyQuant[™] equation.

Inoculated Log ¹⁰ CFU/mL	Estimated Log ₁₀ CFU/mL	CT Values
0.99	1.06	37.4
1.99	1.87	35.4
2.99	3.12	32.4
3.99	3.98	30.3

Meat Science & **Animal Biologics Discovery** UNIVERSITY OF WISCONSIN-MADISON

Figure 1. CampyQuant[™] estimation of inoculated poultry rinses

Table 1. Average *C. jejuni* levels for pre-enrichment and estimated

hygiena